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MULTI-TIME ATTENTION NETWORKS
FOR IRREGULARLY SAMPLED TIME SERIES

Satya Narayan Shukla & Benjamin M. Marlin
College of Information and Computer Sciences
University of Massachusetts Amherst

Ambherst, MA 01003, USA
{snshukla,marlin}@cs.umass.edu

ABSTRACT

Irregular sampling occurs in many time series modeling applications where it
presents a significant challenge to standard deep learning models. This work is
motivated by the analysis of physiological time series data in electronic health

records, which are sparse, irregularly sampled, and multivariate. In this paper,
we propose a new deep learning framework for this setting that we call Multi-

Time Attention Networks. Multi-Time Attention Networks learn an embedding of
continuous time values and use an attention mechanism to produce a fixed-length
representation of a time series containing a variable number of observations. We
investigate the performance of this framework on interpolation and classification
tasks using multiple datasets. Our results show that the proposed approach performs
as well or better than a range of baseline and recently proposed models while
offering significantly faster training times than current state-of-the-art methods.'
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“ Previous work: model-based approach
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+*  Overall structure
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+» Overall structure

«  mTAND: Time embeddingz} multi-time attention= 0|235}0{ ISTSE fixed representation £ tH2t

Continuous time embedding

Linear term: linear patterng Tt

N\ANLAANAL . -
dr(DIi] = Wop " L+ op ifi=0 M embeddings]
N e A N D sin(@, - t + an)

Periodic terms: periodic pattern2 Z4}

Continuousgt time pointsZ vector space= embedding

I WETYLENGUND) LF= AT
Time Embedding Time Embedding

DRDno| EEEE { A}

QueryLength(6) 2= imepoints (4)
Query Key Value

Data Mining
UKN(R/IE{REﬁ .ﬂ:\ Quallity Ancilytics




I Methods

Attention-based Approach: Multi-Time Attention Networks for Irregularly Sampled Time Series

+*  Overall structure
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+*  Overall structure
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s Experimental results

* Interpolation: ODE A€ &=

Of| H[sH THEHLZ =2 ds

Model Mean Squared Error (x10~3)

RNN-VAE 13.418 £ 0.008 12.594 4 0.004 11.887 4 0.005 11.133 = 0.007 11.470 & 0.006
L-ODE-RNN 8.132 4+ 0.020 8.140 £ 0.018 8.171 & 0.030 8.143 £ 0.025 8.402 £ 0.022
L-ODE-ODE 6.721 == 0.109 6.816 £ 0.045 6.798 & 0.143 6.850 £ 0.066 7.142 = 0.066
mTAND-Full 4.139 = 0.029 4.018 £ 0.048 4.157 = 0.053 4.410 1+ 0.149 4.798 = 0.036
Observed % 50% 60% T0% 80% 90%
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- Classification: MH|HOZ =2 M5 Etirregular time series model0l] H[SH ti}2 sk £
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M AUC Score Accuracy .
odel time
PhysioNet MIMIC-III Human Activity per epoch
RNN-Impute 0.764 + 0.016 0.8249 + 0.0010 0.859 == 0.004 0.5
RNN-A; 0.787 £ 0.014 0.8364 + 0.0011 0.857 £ 0.002 0.5
RNN-Decay 0.807 £ 0.003 0.8392 + 0.0012 0.860 £ 0.005 0.7
RNN GRU-D 0.818 + 0.008 0.8270 £ 0.0010 0.862 = 0.005 0.7
Phased-LSTM  0.836 4 0.003 0.8429 + 0.0035 0.855 £ 0.005 0.3
IP-Nets 0.819 + 0.006 0.8390 £ 0.0011 0.869 £ 0.007 1.3
SeFT 0.795 £ 0.015 0.8485 £ 0.0022 0.815 = 0.002 0.5
RNN-VAE 0.515 + 0.040 0.5175 £ 0.0312 0.343 £ 0.040 2.0
ODE-RNN 0.833 £0.009 0.8561 + 0.0051 0.885 £ 0.008 16.5
L-ODE-RNN 0.781 + 0.018 0.7734 + 0.0030 0.838 £ 0.004 6.7
L-ODE-ODE 0.829 = 0.004 0.8559 - 0.0041 0.870 == 0.028 22.0
mTAND-Enc 0.854 + 0.001 0.8419 + 0.0017 0.907 + 0.002 0.1
mTAND-Full 0.858 +0.004 0.8544 +0.0024 0.910 +0.002 0.2
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% Neural Controlled Differential Equations for Irregular Time Series
« 202613 7|F 8542|218

«  Neural ordinary differential equation(Neural ODE)2 ISTS0| S}l D= 9iH

Neural Controlled Differential Equations for
Irregular Time Series

Patrick Kidger James Morrill James Foster Terry Lyons
Mathematical Institute, University of Oxford
The Alan Turing Institute, British Library
{kidger, morrill, foster, tlyons}@maths.ox.ac.uk

Abstract

Neural ordinary differential equations are an attractive option for modelling
temporal dynamics. However, a fundamental issue is that the solution to an
ordinary differential equation is determined by its initial condition, and there
is no mechanism for adjusting the trajectory based on subsequent observations.
Here, we demonstrate how this may be resolved through the well-understood
mathematics of controlled differential equations. The resulting neural controlled
differential equation model is directly applicable to the general setting of partially-
observed irregularly-sampled multivariate time series, and (unlike previous work
on this problem) it may utilise memory-efficient adjoint-based backpropagation
even across observations. We demonstrate that our model achieves state-of-the-art
performance against similar (ODE or RNN based) models in empirical studies on
arange of datasets. Finally we provide theoretical results demonstrating universal
approximation, and that our model subsumes alternative ODE models.
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Patrick Kidger James Morrill James Foster Terry Lyons
Mathematical Institute, University of Oxford
The Alan Turing Institute, British Library
{kidger, morrill, foster, tlyons}@maths.ox.ac.uk

Abstract

Neural ordinary differential equations are an attractive option for modelling
temporal dynamics. However, a fundamental issue is that the solution to an
ordinary differential equation is determined by its initial condition, and there
is no mechanism for adjusting the trajectory based on subsequent observations.
Here, we demonstrate how this may be resolved through the well-understood
mathematics of controlled differential equations. The resulting neural controlled
differential equation model is directly applicable to the general setting of partially-
observed irregularly-sampled multivariate time series, and (unlike previous work
on this problem) it may utilise memory-efficient adjoint-based backpropagation
even across observations. We demonstrate that our model achieves state-of-the-art
performance against similar (ODE or RNN based) models in empirical studies on
arange of datasets. Finally we provide theoretical results demonstrating universal
approximation, and that our model subsumes alternative ODE models.
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% Ordinary differential equation (ODE)
«  ODEZ EL} = #XI2 0E=Sk= original functionS 2H=C}

Hidden layerZ &2 ZAISH= (universal approximation theorem) El2{€2| aPEnt QAL

ODE solve ODE

flx) =x*+C f'(x)

Original functionfS ER2IHAI S o
HES SoliM Z0| 02274
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% Ordinary differential equation (ODE)
- ODES ErL} = %2 I=ESh= original functionS H=C}

_L

Hidden layer2 et4-Z ZAISH= (universal approximation theorem) El2{2l2| D&t QAL

Problem? ODE solve ODE

42 ODES Z¥Chst B0 2 4 9ir
2| Bl gt 22 S5 feHunction2 f(x) = x?+C f ! (x)
02| ODEE Z0{0F k=717

— ODE Solvert
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«* ODE Solver: Euler method

* |dea: initial point2} =842 original function= 2AISH =X}

+ M2 BASICBI|0|2E, initial pointS SoH S-S TAHS £40| B S Kop 4912
0Yn_1
flx) =2x initial point = (2,1) V. =Yp_q +h-=—
0xp_4
! V1 = 1+h-4
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slopeof (21) =f'(2) =4
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«* ODE Solver: Euler method

« |dea:initial point2t =24~ original functionS ZAISH =X}

MBS 245 CSH 0|22, initial pointE Sl 2l4-E 2ARSHE 00| B2 MS Ao +~US
0Vn-1
flx) =2x (x1,y1) = (49) Yn=Yn-1th-
0xp—1
A yl — 1 + h 4‘
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«* ODE Solver: Euler method

* |dea: initial point2} =842 original function= 2AISH =X}

HME2 F0HESH 0|22 initial pointE Sof gf-E 2AOH= 20| A2 MS Aot =~ UZ
, 0YVn—
f'(x) = 2x (2, ¥2) = (6,25) Yo = Yna +h- 27—
0xp—1
A yl — 1 + h 2
: Y, =9+h-8
ys =25+ h-12

»
»

slope of (6,21) = f'(6) =12
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«* ODE Solver: Euler method

« |dea:initial point2t =24~ original functionS ZAISH =X}
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R/

“ Neural ordinary differential equation (Neural ODE)

 |dea: Neural network2| hidden state trajectory= ODE solver= Z0{=XH

[

o - F(h(D) -
P | [ .7 ")
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/7

“ Neural ordinary differential equation (Neural ODE)

 |dea: Neural network2| hidden state trajectory= ODE solver= Z0{=XH

0]= Resnet?| residual connection 0}0|C|0{2} H|&

hn — hO +f(h110) +f(h219) +f(h3'9) + +f(hn—178)

£[Z hidden state2| AlX 2 layerS X|LFHA{S| Helzke| ghito = O|SROJZICH
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/7

“ Neural ordinary differential equation (Neural ODE)

 |dea: Neural network2| hidden state trajectory= ODE solver= Z0{=XH

0|= Resnet?| residual connection O}0|C|0{2} H|== > hidden stateZ discrete?} OHL|2} continuous= ELH= 70| X}0|

[~ e} m) }
P NP hy Hidden state® hy .

trajectory

1
hy =h0+j f(h(t),t;0)dt
0

HE{ n77tX[9] discrete space” O
Continuousgltrajectory= 7’4
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R/

“ Neural ordinary differential equation (Neural ODE)

Forward: hy= initial state, h; 2 final state= H2|sl{ Euler methodZ 20137 |

1
hy = hy +j f(h(t),t;0)dt
0

Forward >

ODE solver (ex. Euler method)Z 8112
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R/

“ Neural ordinary differential equation (Neural ODE)
«  Forward: hy= initial state, h, = final state= 2|3l Euler method = Z0{F7 |

Backward: a, = initial state, ay= final state= 2[5l Adjoint sensitivity method = Z0{=7 |

2 21
ap =a; + f Of(a(t) t;0)dt (t) oL
= 1 ) ; a — T~
" oh(t)
Forward > ODE solver (ex. Euler method) = SHZ
Backward < ODE solver (ex. Euler method) = sliZ
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% The problems of Neural ODE?

Really continuous?: Neural ODE= hidden states2| continuous trajectoryE ZAISHK| 2t H|OJE{2] continuous pathE 112{5HX|=

oro
Lo O

« Initial state?: Neural ODE= initial state0l| 2|Z, time series2| &=A{0]| (2t =X 4~ Q1S

What we solve?

i \/ ﬂl —
Hidden states \/ A/\A\/* A o (t) = fo(h(1)

Initial state?
h(0) = lg(x)

Data

v

Imregullar timestep ° ® ® ] L]
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¢ Neural controlled differential equations (Neural CDE)

=AM

Data path: Irregular®t data pointsZ cubic interpolation@ 2 H7t = ALEMQIH|O|E =2 XE MM

«  Continuous®t pathol| 7 |25l [0 |E{0]| LixHE! HiZlE H5K O = modeling

Hidden states \/ \_/ What we solve?

dh dx
Data path X /\f\ /\/\ 7 ®) = fo(h(®)) I (t)
Initial state?
Data
/\/\f\/\/—\ h(O) — l@(to; xo)

Imegular timestep ° ® ® . . >
tO tl t2 t3 t4
UKN(R/IE{REﬁ oﬁ gigﬁh;l/f\wg;glyﬁcs
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s Experimental results

«  Classification, prediction S 021 taskstlA] ODE 7|2t ZEHEN| HsH £E22 M5 7|2

«  ODES| &7%2! cost efficiencyE FAISIHMT A|AIE taskol|A] &FETt = 7hd

Table 1: Test accuracy (mean =+ std, computed across five runs) and memory usage on
CharacterTrajectories. Memory usage is independent of repeats and of amount of data dropped.

Test Accuracy Memory

Model (MB)
30% dropped 50% dropped 70% dropped Hsage

GRU-ODE 92.6% + 1.6%  86.7% +3.9%  89.9% + 3.7% 1.5
GRU-At 93.6% +=2.0% 913% +2.1% 90.4% + 0.8% 15.8
GRU-D 942% +2.1% 902% £4.8% 91.9% + 1.7% 17.0
ODERNN ¢ 934% +£06% _ 96.0% +£0.3%  953%+06% 148
Neural CDE (ours) 98.7% +£0.8% 98.8% +0.2% 98.6% =+ 0.4% 1.3
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s Experimental results
«  Classification, prediction S 021 taskstlA] ODE 7|2t ZEHEN| HsH £E22 M5 7|2
«  ODES| &7%2! cost efficiencyE FAISIHMT A|AIE taskol|A] &FETt = 7hd
Table 2: Test AUC (mean = std, computed across five runs) and memory usage on PhysioNet sepsis

prediction. ‘Ol refers to the inclusion of observational intensity, ‘No OI’ means without it. Memory
usage is independent of repeats.

Model Test AUC Memory usage (MB)
Ol No Ol Ol No Ol
GRU-ODE 0.852 £ 0.010 0.771 =0.024 454 273
GRU-At 0.878 £0.006 0.840 = 0.007 837 826
GRU-D 0.871 £0.022 0.850 = 0.013 889 878
ODERNN_____0874+0016 0833+£0020 696 636
Neural CDE (ours) 0.880 = 0.006 0.776 == 0.009 244 122
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X/

s Experimental results

«  Classification, prediction S 021 taskstlA] ODE 7|2t ZEHEN| HsH £E22 M5 7|2

S

ODE<| Z7H¢2I cost efficiencys FAISFHM T A|AIB taskOi|A afEot & 7

Table 3: Test Accuracy (mean = std, computed across
five runs) and memory usage on Speech Commands.
Memory usage 1s independent of repeats.

Memory
Model Test Accuracy usage (GB)
GRU-ODE 47.9% + 2.9% 0.164
GRU-At 43.3% + 33.9% 1.54
GRU-D 32.4% =+ 34.8% 1.64
ODE-RNN 65.9% + 35.6% 1.40

Neural CDE (ours) 89.8% =+ 2.5% 0.167

Data Mining
KOREA .{l,.

UNIVERSITY Quallity Analyfics




- Conclusion

% Multi-Time Attention Networks for Irregularly Sampled Time Series
«  Transformer?| attention= 7+t ISTSO| £2}El attention module X[t
«  Ireguarly sampledE A|ZHS RAIE 7|9 = 17 BIE| 2 Hot5H0] EHE{d 2E0| M E
«  VAER} Z2SIH ISTS taskOl|M 203t M5 7|
% Neural Controlled Differential Equations for Iregular Time Series
Neural ODEE AF23}0 hidden state2| continuous®l trajectoryS =iz
«  Neural ODEZ| I8 data pathS EZIQ= MAMSIHA ISTSO| £3H=l Neural ODE |0t

«  ComplexityS 7A[oFHA| ODE A8 22 CHH| 85 7HM
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